首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11582篇
  免费   1225篇
  国内免费   437篇
工业技术   13244篇
  2024年   27篇
  2023年   124篇
  2022年   211篇
  2021年   355篇
  2020年   365篇
  2019年   313篇
  2018年   334篇
  2017年   453篇
  2016年   450篇
  2015年   455篇
  2014年   702篇
  2013年   832篇
  2012年   937篇
  2011年   908篇
  2010年   685篇
  2009年   693篇
  2008年   570篇
  2007年   774篇
  2006年   680篇
  2005年   579篇
  2004年   484篇
  2003年   472篇
  2002年   378篇
  2001年   268篇
  2000年   207篇
  1999年   174篇
  1998年   155篇
  1997年   102篇
  1996年   90篇
  1995年   83篇
  1994年   78篇
  1993年   63篇
  1992年   46篇
  1991年   31篇
  1990年   32篇
  1989年   26篇
  1988年   15篇
  1987年   8篇
  1986年   9篇
  1985年   19篇
  1984年   12篇
  1983年   6篇
  1982年   23篇
  1981年   2篇
  1980年   6篇
  1973年   1篇
  1972年   2篇
  1968年   1篇
  1957年   1篇
  1951年   1篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
During curing of thermosetting resins the technologically relevant properties of binders and coatings develop. However, curing is difficult to monitor due to the multitude of chemical and physical processes taking place. Precise prediction of specific technological properties based on molecular properties is very difficult. In this study, the potential of principal component analysis (PCA) and principal component regression (PCR) in the analysis of Fourier transform infrared (FTIR) spectra is demonstrated using the example of melamine-formaldehyde (MF) resin curing in solid state. FTIR/PCA-based reaction trajectories are used to visualize the influence of temperature on isothermal cure. An FTIR/PCR model for predicting the hydrolysis resistance of cured MF resin from their spectral fingerprints is presented which illustrates the advantages of FTIR/PCR compared to the combination differential scanning calorimetry/isoconversional kinetic analysis. The presented methodology is transferable to the curing reactions of any thermosetting resin and can be applied to model other technologically relevant final properties as well.  相似文献   
2.
This research continued the development of a difunctional Oxirane and multifunctional Acrylate interpenetrating polymer network composite System (OASys) with antimicrobial properties. The effects of 4-Isopropyl-4′-methyldiphenyliodonium tetrakis (pentafluorophenyl) borate (Borate), hexamethylene diamine (HMDA) and N,N-dimethyl p-toluidine (DMPT) on OASys (Epalloy 5001:dipentaerythritol hexaacrylate) composite hardness, contact angle, monomer-to-polymer degree of conversion (DoC), mechanical properties, polymerization shrinkage, shrinkage stress, and antimicrobial properties were determined. Bis-GMA:TEGDMA composites were used as the control. OASys composites with 9 wt% Borate and 0.5 wt% DMPT or 1.5 wt% HMDA had comparable hardness, DoC's and polymerization shrinkages to controls, but had lower contact angles and mechanical properties. Additionally, OASys composites with 1.5 wt% HMDA had significantly less polymerization stress than controls and demonstrated significant antibacterial activity against Streptococcus mutans and Lactobacillus casei out to 3 months. With lower shrinkage stress and long-term antimicrobial activity, OASys composites look promising for increasing the clinical lifetime of dental composites, but improvements in mechanical properties are needed.  相似文献   
3.
The effect of oxygen and additional oxygen providers on furfuryl alcohol polymerization was investigated through chemical analyses and mechanical evaluation. NMR, UV–vis, Fourier transform infrared, and gas chromatography–mass spectrometry (GC–MS) results suggested that atmospheric oxygen and the further addition of an oxygen source functioned as an activator for the entire network polymerization. Interestingly, the construction of a conjugated structure on the furan linear chain, which is key to three-dimensional cross-linking, also appears to be accelerated in the presence of oxygen. Furthermore, the introduction of oxygen providers into the curing system successfully enhanced the mechanical properties of the cured furan resin.  相似文献   
4.
Metabolic glycoengineering enables a directed modification of cell surfaces by introducing target molecules to surface proteins displaying new features. Biochemical pathways involving glycans differ in dependence on the cell type; therefore, this technique should be tailored for the best results. We characterized metabolic glycoengineering in telomerase-immortalized human mesenchymal stromal cells (hMSC-TERT) as a model for primary hMSC, to investigate its applicability in TERT-modified cell lines. The metabolic incorporation of N-azidoacetylmannosamine (Ac4ManNAz) and N-alkyneacetylmannosamine (Ac4ManNAl) into the glycocalyx as a first step in the glycoengineering process revealed no adverse effects on cell viability or gene expression, and the in vitro multipotency (osteogenic and adipogenic differentiation potential) was maintained under these adapted culture conditions. In the second step, glycoengineered cells were modified with fluorescent dyes using Cu-mediated click chemistry. In these analyses, the two mannose derivatives showed superior incorporation efficiencies compared to glucose and galactose isomers. In time-dependent experiments, the incorporation of Ac4ManNAz was detectable for up to six days while Ac4ManNAl-derived metabolites were absent after two days. Taken together, these findings demonstrate the successful metabolic glycoengineering of immortalized hMSC resulting in transient cell surface modifications, and thus present a useful model to address different scientific questions regarding glycosylation processes in skeletal precursors.  相似文献   
5.
The over-exploitation of finite fossil resources and/or the increased environmental and sustainable awareness inspire scientists and technologists to search for inexpensive alternatives from renewable chemicals. Phenol formaldehyde (PF) resins, the oldest type of synthetic polymers with good mechanical properties and heat resistance, are widely used in the production of coatings, laminates, molding compositions, and glues. Here, biobased urushiol-derived PF resins were synthesized from the alkali-catalyzed reaction between urushiol and formaldehyde. The chemical compositions and molecular structures of resole resins were characterized by carbon-13 nuclear magnetic resonance and Fourier transform infrared spectroscopy, and their curing behaviors were studied by differential scanning calorimetry. The as-prepared urushiol-derived resole resins had methylol (Ph−CH2OH), ortho- and para-hemiformal groups (Ph−CH2OCH2OH), and the para−para/ortho−para/ortho−ortho links of methylene groups (Ph−CH2−Ph), whereas the resole resins had low curing temperatures at about 100–113°C. Additionally, given the long side alkyl group moiety on the aromatic rings of urushiol, the films of cured urushiol-derived resole resins had low glass transition temperatures of 132 ± 2°C. Furthermore, the as-prepared urushiol-derived coatings exhibited excellent physical and mechanical properties.  相似文献   
6.
Possessing excellent properties including good biocompatibility, high strength, and stiffness, polyether-ether-ketone (PEEK) has significant application values in medical and industrial fields. However, the relatively poor wettability and low adhesion limit its further applications. Atmospheric pressure plasma jet (APPJ) has been utilized for adjusting PEEK properties, but better hydrophilization effect and time stability after treatment are still urgently needed. In this paper, we employ a water-mixing nitrogen (N2 H2O) APPJ to process PEEK, and surface wettability can be effectively improved (contact angle ~18° within 2 min, distance between sample and nozzle outlet: 10 mm) without inducing obvious microstructure damages. Additionally, after storing for 40 days, the sample treated by N2 H2O APPJ also possessed better wettability (~54°) compared with that treated by N2 APPJ (~65°). On the basis of this low-damage and high-efficient modification method, we perform aging experiments under different conditions (different temperatures 25, −10°C; and low vacuum condition: 50 kPa) to determine a relatively optimum storing condition for this method. The experiment results indicate that low temperature and vacuum are conducive to retaining the plasma-induced wettability (~34°). The treatment method and storing conditions for PEEK presented here may facilitate the application of PEEK in various fields.  相似文献   
7.
通过压实试验、无侧限抗压强度试验和劈裂试验,分析不同木质纤维含量、水泥含量和固化时间对软土力学性能的影响规律,探讨木质纤维、水泥改良软土的微观机制。结果表明,木质纤维的加入对水泥改良软土的击实特性有显著的影响;木质纤维与水泥可有效改善土体的抗压和劈裂抗拉强度,随着木质纤维含量的增加,改良土的抗压和劈裂抗拉强度呈现出明显的“驼峰”现象,并在木质纤维含量为0.25%时最大;木质纤维与水化产物、软土颗粒形成互锁效应,增大了改良土的摩擦力,同时木质纤维还承担一定的拉伸强度,使改良土的劈裂强度增加。  相似文献   
8.
The influence of Newtonian heating/cooling in the presence of heat source/sink has been investigated on laminar free convective flow in a vertical annular permeable region. The mathematical model for the problem has been considered as a boundary value problem consisting of two simultaneous ordinary differential equations. The boundary value problem has been transformed to nondimensional form. This has given rise to a number of parameters representing both geometrical and physical features of the problem. Closed‐form analytical solutions of the governing equations have been obtained for two different cases of internal heat generation/absorption. To assess the effects of governing parameters on the fluid velocity and temperature, a number of profiles of these field variables have been presented. The efficacy of the distinct processes on the field variables has been discussed extensively. The main outcome obtained in this study is that the velocity as well as temperature is enhanced in the case of the Newtonian heating while the opposite behavior occurs in the Newtonian cooling for both cases of source and sink. Furthermore, the influence of the governing parameters has been shown on the skin friction, volume flow rate, and the Nusselt number.  相似文献   
9.
李夏 《云南化工》2019,(6):162-163
结合不同改性剂掺量单因素试验,确定了采用88mm叶轮、115mm容器、圆盘锯齿式搅拌器(转速1400r/min)、175℃共混温度、改性剂掺量4.27%、单次搅拌300g的制备工艺参数。在此条件下制备的聚氨酯改性沥青具有优异的水稳定性、储存稳定性且耐老化、耐高温,拥有比普通聚合物改性沥青更高的车辙因子G*/sinδ和15℃动态模量,基本满足高模量沥青要求。  相似文献   
10.
Using dimer acid (DA) as raw material, DA diglycidyl ester (DADGE) was synthesized and used as reactive toughening agent to prepare paper-based copper clad laminate (p-CCL). The factors affecting the epoxy value of DADGE and the effect of the resin on the gelation time were studied. The effects of the epoxy value and the addition amount of DADGE on the solderleaching resistance, flammability, water absorption, bending strength, and impact strength of the p-CCL were discussed. The results showed when the molar ratio of DA to ECH was 1:8 and the molar ratio of DA to sodium hydroxide was 1:1.6, the epoxy value of DADGE reached the maximum value of 0.23 mol/100 g. The DADGE can shorten the gelation time of the glue. The p-CCL meets the performance of the IPC-TM-650 standard. And when the addition amount of DADGE is less than 12 wt %, the flammability of the p-CCL reaches UL94V-0 level. The p-CCL prepared by adding 6 wt % of DADGE with 0.08 mol/100 g epoxy value has the best comprehensive performance, its toughness and rigid are comparable to those of p-CCL with 12 wt % of commercially available high performance toughening agents and it has higher solderleaching resistance. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47508.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号